Circle Geometry

Properties of a Circle
Circle Theorems:
> Angles and chords
$>$ Angles
$>$ Chords
$>$ Tangents
$>$ Cyclic Quadrilaterals

Properties of a Circle

Circle Theorems

$>$| Equal arcs subtend equal angels at the |
| :--- |
| centre of the circle. |

If two arcs subtend equal angles at the
centre of the circle, then the arcs are
equal.

$l=r \theta$

Internally \quad| The products of intercepts of intersecting |
| :--- |
| chords are equal |
| AX.XB $=\mathrm{CX} . \mathrm{XD}$ |

Externally	The square of the length of the tangent from an external point is equal to the product of the intercepts of the secant passing through this point. $(\mathrm{AX})^{2}=\mathrm{BX} . \mathrm{CX}$
Externally	Prove $\triangle A C X\|\|\mid \triangle B A X$ A $\angle A X C=\angle B X A$ (common) A $\angle X A C=\angle X B A$ (Angle in alternate segment) A $\angle A C X=\angle B A X$ (Angle sum of triangle) Correspond sides $\begin{aligned} & \frac{A X}{C X}=\frac{B X}{A X} \\ & \therefore(A X)^{2}=B X . C X \end{aligned}$

Angles standing on the same arc are
equal.

The opposite angles in a cyclic
quadrilateral are supplementary.

